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Context and Motivation

Speech-to-text translation (ST): challenging, often
requires two auxiliary tasks: automatic speech
recognition (ASR) and machine translation (MT).
Standard ASR & MT pre-training → modality gap!

Contributions

Showing that connectionist temporal classification
(CTC) can reduce modality gap.
New pre-training method: Siamese pre-training
combining CTC and optimal transport (OT).
Simplicity: our method can reduce modality gap at
pre-training stage, requiring no change in ST model.
Generality: our method can align sequences of
features from different modalities.

Review of Modality Gap in Pre-training
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Standard ASR & MT pre-training recipe
ST fine-tuning is initialized with ASR encoder & MT decoder.

CE stands for cross-entropy.

✗ Loss of pre-trained alignment information due to ASR
decoder & MT encoder being discarded during fine-tuning.

Reducing Modality Gap with CTC
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ASR pre-training with CTC. CE is optional.

Given audio input X ≜ (x1, . . . , xS) with hidden features
(h1, . . . , hS) ≜ encode(X;θθθ), CTC [Graves et al., 2006] pre-
dicts a text token ât ∈ V at each time step t:

p(at | X) = softmax(Wht + b)[at ] ∀at ∈ V ,

ât = argmax
at∈V

p(at | X).

✓ ASR encoder trained with CTC already learns to align
speech input to text output without a decoder.

Proposed Siamese Pre-training for ST
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Proposed ASR & MT pre-training recipe
Pre-trained MT encoder is used by OT in ASR step.

✓ All pre-trained components are used.
✓ Optimal transport reduces modality gap by aligning
speech and text features.

Optimal Transport for Pre-training
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Siamese network for speech-text alignment
OT pulls speech and text features closer in Wasserstein space,

while CTC further enhances speech features.

Given speech features U = (u1, . . . , um), text features
V = (v1, . . . , vn) (ui , vj ∈ Rd), and distance function
c . The OT (or Wasserstein) loss is defined as:

OT(U, V) = min
Z∈Rm×n

m∑
i=1

n∑
j=1

Zijc(ui , vj),

s.t. Z ≥ 0,

n∑
j=1

Zij = 1
m,

m∑
i=1

Zij = 1
n.

Interpretation: OT finds the transportation plan Z
with minimum cost between two distributions.

U,V: mass locations of two uniform distributions.
c(ui , vj): unit cost of transporting from ui to vj .
Zij : quantity of mass transported from ui to vj .

Positional encoding for OT
Motivation: OT loss ignores sequence orders, while
our encoder inputs are monotonically aligned.
Idea: integrating normalized positions si = i−1

m−1 and
tj = j−1

n−1 into cost function:

c(ui , vj) =
(∥∥ui − vj

∥∥p
p + γp ∣∣si − tj

∣∣p)1/p
.

Experimental results

Results on CoVoST-2
BLEU relative to CE. “mt” means MT pre-training was performed.

Method Multi BLEU
de es fr it nl pt ro ru avg

fairseq S2T [Wang et al., 2020] ✓ 24.5 28.2 34.9 24.6 28.6 31.1 23.8 16.0 26.5
ESPnet-ST [Inaguma et al., 2020] ✓ 22.9 28.0 32.7 23.8 27.4 28.0 21.9 15.8 25.1
Dual-decoder [Le et al., 2020] ✓ 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2 25.6
Adapters [Le et al., 2021] ✓ 24.7 28.7 35.0 25.0 28.8 31.1 23.8 16.4 26.6
BiKD [Inaguma et al., 2021] - 25.3 - 35.3 - - - - - -
JointSpeechText [Tang et al., 2021] - 26.8 31.0 37.4 - - - - - -
TaskAware [Indurthi et al., 2021] - 28.9 - - - - - - - -
ConST [Ye et al., 2022] - 28.3 32.0 38.3 27.2 31.7 33.1 25.6 18.9 29.4
STPT [Tang et al., 2022] - - 33.1 39.7 - - - - - -
CE pre-training

large

✓ 26.9 30.8 37.7 26.7 30.8 33.3 26.2 17.9 28.8
CTC pre-training ✓ 27.6 31.4 38.2 27.2 31.1 33.6 26.4 18.4 29.2
CTC+CE pre-training ✓ 27.2 31.2 38.0 27.0 31.5 33.7 26.2 18.3 29.1
Siamese-PT (this work) ✓ 27.9 31.8 39.2 27.7 31.7 34.2 27.0 18.5 29.8

Results on MuST-C

Main takeaways

Encoder trained with CTC is stronger than the one
trained with encoder-decoder-CE.
Our Siamese pre-training helps reduce modality gap
without any changes in the ST model.
Optimal transport is very effective for learning to
align sequences of features from different modalities.
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